Semi-iterative Regularization in Hilbert Scales

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-iterative Regularization in Hilbert Scales

In this paper we investigate the regularization properties of semiiterative regularization methods in Hilbert scales for linear ill-posed problems and perturbed data. It is well known that Landweber iteration can be remarkably accelerated by polynomial acceleration methods leading to the notion of optimal speed of convergence, which can be obtained by several efficient two-step methods, e.g., t...

متن کامل

Inexact Newton regularization methods in Hilbert scales

We consider a class of inexact Newton regularization methods for solving nonlinear inverse problems in Hilbert scales. Under certain conditions we obtain the order optimal convergence rate result. Mathematics Subject Classification (2000) 65J15 · 65J20 · 47H17

متن کامل

Iterative regularization methods for ill-posed Hammerstein-type operator equations in Hilbert scales

In this paper we report on a method for regularizing a nonlinear Hammerstein type operator equation in Hilbert scales. The proposed method is a combination of Lavrentieve regularization method and a Modified Newton’s method in Hilbert scales . Under the assumptions that the operator F is continuously differentiable with a Lipschitz-continuous first derivative and that the solution of (1.1) fulf...

متن کامل

Optimal Discretization of Inverse Problems in Hilbert Scales. Regularization and Self-Regularization of Projection Methods

We study the efficiency of the approximate solution of ill-posed problems, based on discretized noisy observations, which we assume to be given beforehand. A basic purpose of the paper is the consideration of stochastic noise, but deterministic noise is also briefly discussed. We restrict ourselves to problems which can be formulated in Hilbert scales. Within this framework we shall quantify th...

متن کامل

An Optimal Order Yielding Discrepancy Principle for Simplified Regularization of Ill-posed Problems in Hilbert Scales

Recently, Tautenhahn and Hämarik (1999) have considered a monotone rule as a parameter choice strategy for choosing the regularization parameter while considering approximate solution of an ill-posed operator equation Tx =y , where T is a bounded linear operator between Hilbert spaces. Motivated by this, we propose a new discrepancy principle for the simplified regularization, in the setting of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2006

ISSN: 0036-1429,1095-7170

DOI: 10.1137/040617285